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Abstract—Fixed-bed regenerators are compact heat exchangers in which heat is absorbed from the high temperature flue gases and 
released to the low temperature inlet gas using high heat capacity material matrix. The heat transfer in the fixed bed heat exchangers is 
govern by the coupled partial differential equations(PDEs). The computational time for solving these coupled PDEs is very large using the 
numerical methods. In this paper these equations are solved using the finite-difference method and it is observed that the computational 
time of the solution got reduce without any significant variation in the results by using the wavelets. The wavelets are the functions having 
some value for a short duration and zero otherwise. It helps in analyzing the rapidly changing transient signals. The grid size changes 
according to the nature of the curve. In the present work two wavelets i.e.haar wavelet and daubechies wavelets are used for the grid 
adaption and the result obtained by them is compared. 

Index Terms—Coupled partial-differential equation,daubechies wavelet,fixed-bed regenerators, grid-adaption, haar wavelet, rapidly 
changing transient signals, wavelets. 

 

1 INTRODUCTION
The partial differential equations encountered in heat and 
mass transfer problems, involving a moving temperature pro-
file or boundary, are complicated to solve analytically. These 
equations are usually coupled transient parabolic partial diffe-
rential equations. Solution of these equations using numerical 
methods takes large amount of computational time. The prob-
lem is to find an efficient numerical approximation method to 
solve these coupled transient PDEs. The method should be 
able to analyze the temperature front moving with time and 
maintain an effective grid discretization of the spatial variable. 

These type of coupled transient equations are occurred in 
many situations. One of them is fixed-bed regenerator. Fixed-
bed heat exchangers are used in industries or power plants to 
recover heat from hot exhaust gases and then reuse this heat to 
preheat incoming surrounding air. This increases efficiency of 
the plant and helps in controlling the environmental emis-
sions. A stream of high temperature flue gases is made to flow 
over the regenerator. The regenerator absorbs heat from the 
flue gases and stores it in the matrix made of any high heat 
capacity solid material so the temperature of flue gasses emit-
ting to the surroundings gets reduce and the temperature of 
the solid material matrix increases. After a certain duration the 
flow of the hot gas is stopped. This is called charging period of 
the regenerator. Now a stream of cold inlet gas usually sur-
rounding air is made to flow over the heated or charged rege-
nerator matrix for a certain period. The cold stream receives 
heat from the charged matrix and gets preheated before enter-
ing to the plant. This cools down the heated regenerator ma-
trix and brings its temperature down to the initial tempera-
ture. This is called the discharging period of the regenerator.  
The preheating insures that the lesser energy is required to 
heat this inlet air inside the plant which results in an incre-
ment in the efficiency of the plant. At least two beds are re-
quired for the continuous operation of the fixed-bed regenera-
tor. 

The concentration and temperature profiles of a fixed-bed 
regenerators shows dynamic fronts. The methodsfor solving 
these type of problems are inefficient mainly because oftaking 
uniform dense grids alongcomplete bed length for all time 
levels. This computational time can be reduced by the me-
thodswhich are based on non-uniform grids and can adapt the 
changes in the solution dynamically. This requirement can be 
achieved by the use of wavelets. The concept of wavelet was 
introduced in applied mathematics and physics by the end of 
the 1980s by Daubechies and Mallat.The wavelets functions 
break down the data into different frequency components, and 
then study each component with a resolution matched to its 
scale.A set of wavelet coefficients is generated for different 
resolutions and spatial location. These coefficients are com-
pared with a threshold value. The points having the coefficient 
value lesser than the threshold value are eliminated from the 
grids. This eliminates the problem of dense grids for complete 
domain. 

2 WAVELETS THEORY 
Wavelets arefunctions which are non-zero for very short dura-
tion and having a zero integrated value. All set of functions of 
a wavelet family generates from the single wavelet function 
-called mother wavelet by scaling and translation opera(ݔ)߰
tion. 

 
߰௝,௞(ݔ) = 2௝ ଶ⁄ ߰(2௝ݔ − ݇)   ݆,݇	 ∈ ܼ 

 
Different scaled and translated versions of the wavelet 

function can be obtained by varying the values for j and k re-
spectively. Wavelets are derived from a scaling function߶(ݔ). 

 
߶௝,௞(ݔ) = 2௝ ଶ⁄ ߶(2௝ݔ − ݇)   ݆,݇	 ∈ ܼ 
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Wavelet transform decomposes a discrete signal into two sub- 
signals of half of its length.  The two sub-signals relate to two 
type of wavelet coefficients i.e. approximation coefficients and 
detailed coefficient. If a function is approximately constant 
over a time period or a spatial region, its detailed wavelets 
coefficient becomes approximately zero for that region. 
 

2.1Haar Wavelet 
Haar wavelet is the simplest and the oldest among all wave-
lets and provide foundation for understanding all other wave-
lets. 
Haar scaling function is defined as 

 

(ݔ)߶ = ൜1,			݂ݎ݋	0 ≤ ݔ ≤ 1
݁ݏ݅ݓݎℎ݁ݐ݋			,0  

 
Haarwaveletfunction is defined as 
 

(ݔ)߰ = ൝
0	ݎ݋݂			,1 ≤ ݔ ≤ 1/2
	1/2	ݎ݋݂			,1− ≤ ݔ ≤ 1

݁ݏ݅ݓݎℎ݁ݐ݋												,0
 

 
 

 

2.2 Daubechies(db4) wavelet 
Daubechies wavelets extends the haar wavelets by using 

longer filters, that produce smoother scaling functions and 
wavelets. The difference between the Haar transform and the 
daubechies transform lies in the definition of scaling signals 
and wavelets.The db4 scaling signals has the support of four 
time or space units. The db4 scaling coefficients are defined as 

 

ଵߙ = (1 + √3)
4√2
൘ ଶߙ   = (3 + √3)

4√2
൘  

ଷߙ = 3 − √3)
4√2
൘ ସߙ   = (1 − √3)

4√2
൘  

 
Similarly, db4 wavelet numbers are defined as 

 

ଵߚ = (1− √3)
4√2
൘ ଶߚ   = (√3− 3)

4√2
൘  

ଷߚ = 3 + √3)
4√2
൘ ସߚ   = (−1 − √3)

4√2
൘  

 
 
These scaling coefficients and wavelet numbers are used to 

construct the 1stlevel db4 scaling and wavelet functions. 

3 MATHEMATICAL MODEL 
 

The fig. 1 shows the model of heat transfer in fixed-bed 
heat regenerator. 

 
 

 
 
 

 
Fig. 1. Heat transfer model of a bed 
 
 
Following assumptions are made to formulate the mathe-

matical model. 
1. Thermal properties of the gas and solid are constant. 
2. The velocity and temperature fields of each fluid at 

the inlet are uniform over the flow cross section and 
do not change with time. 

3. All balls in the bed are identical and have a similar 
size. 

4. There is no heat loss from the regenerator's wall. 
5. There is no internal heat generation in the regenera-

tor. 
6. Balls have a single contact point which results neglig-

ible axial conduction in the solids. 
7. The mass flow rates of hot and cold streams are con-

stant. 
 
The heat balance forthe differential element shown in fig. 1 

leads to following governing equations for solid and gaseous 
phase. 
 

For gaseous phase 
 

݇௘ ቀ
డమ ೒்

డ௭మ
ቁ − ௚ݒ௚ߩ௣௚ܥ ቀ

డ ೒்

డ௭
ቁ+ ℎ௣ܽ௦൫ ௦ܶ − ௚ܶ൯ ߝ − ସ௎

஽್ఌ
ൗ ൫ ௚ܶ −

 (1)     ݐ߲߲݃ܶ݃ߩ݃݌ܥ=ܽܶ

 
For solid phase 

 
−௦(1ߩ௣௦ܥ (ߝ ቀడ ೞ்

డ௧
ቁ = ℎ௣ܽ௦( ௔ܶ − ௦ܶ)   (2) 

 
In order to find the temperature variation along the 

bed length, these equations need to be solved simultaneously 
along with the following initial and boundary condition. 
 
The initial condition for the problem is given by 
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Tg= Tgi; Ts = Tsi for t = 0 and 0 ≤ ݖ ≤  ܮ
 

 
 
 
 
The boundary conditions are given by 
 
݇௘ ቀ

డ ೒்

డ௭
ቁ = ൫ߝ௚ݒ௚ߩ௣௚ܥ ௚ܶ − ௚ܶ௜൯ for t > 0 and ݖ = 0 

 
 
ቀడ ೒்

డ௭
ቁ = 0   for t > 0 and ݖ =  ܮ

 
 

4 MATERIALS AND METHOD 
These equations are solved by finite-difference method using 
implicit scheme. Central difference approach is taken to ap-
proximate the differential grids. 

A program is made in MATLABto solve these equations. 
The physical parameters used to solve the equations are 
shown in Table 1. 
 

 
TABLE 1: DIFFERENT PARAMETERS TAKEN FOR THE 

FIXED-BED REGENERATOR 
Packing material Gravels 

Bed length(m) 2 

Packing density (kgm-3) 2200 

Gas density(kgm-3) 0.935 

Specific heat solid(Jkg-1K-1) 840 

Specific heat gas(Jkg-1K-1) 1050 

Bed void 0.41 

vg(ms-1) 0.08 

hp(Wm-2K-1) 61 

ks(Wm-1K-1) 1.9 

U(Wm-2K-1) 0 

5 RESULTS AND DISCUSSION 
Following results are obtained by solving these partial diffe-
rential equations simultaneously using finite-difference me-
thod for equal grids. The inlet temperature of the gas is taken 
as 4000C.  

Fig. 2 shows the variation of temperature along bed 
length obtained during charging period for the inlet velocity 
0.08 ms-1 at different time levels i.e. 60, 120, 180, 240 and 300 
min using finite-difference method for equal 1024 grids for all 
time levels. The computational time of the program for this 
case is obtained as 847 s. 
 
 

 
Fig. 2. Variation of temperature along bed length obtained at 

different time levels using FDM for equal grids 
 
 
Fig. 3 shows the results by using haar wavelet for the inlet 
velocity 0.08 ms-1. The computational time of the program for 
this case is obtained as 314 s. 
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Fig. 3. Variation of temperature along bed length obtained at 
different time levels using Haar wavelet 

 
 
Fig. 4 shows the results by using db4 wavelet for the inlet ve-
locity 0.08 ms-1. The computational time of the program for 
this case is obtained as 173 s. 
 

 

Fig. 4. Variation of temperature along bed length obtained at 
different time levels using db4 wavelet 

 
 
 
Fig. 5 and 6 shows the distribution of grid points for different 
resolution levels at 60 min for haar and daubechies wavelets 
respectively. 

 
 

Fig. 5.  Grid pattern for haar wavelet at t=60 min 

 
 

Fig. 6.  Grid pattern for db4 wavelet at t=60 min 

 
From the grid pattern for haar and db4 wavelet in can be ob-
served that the high resolution grids are only at the beginning 
of the bed where the temperature front is presentat t=60 min. 

 

6CONCLUSIONS 
This study shows the advantage of wavelet based adaptive 
methods over the simple numerical methods. The results show 
that the computational time in case of wavelet based method 
was lesser than the simple finite-difference method for same 
results due to reduction in grid density where curve is smooth 
and increment in grid density when there are steep 
changes.The computation becomes 62.9% faster in case of haar 
wavelet and 79.5% faster in case of db4 wavelet.The computa-
tional time using db4 wavelet is minimum.This may be due to 
the use of longer wavelet filter in case of db4 wavelets that has 
support of four space units. 

 

NOMENCLATURE 
as Specific area of packing solids in bed 
Cpg Specific heat of gas stream 
Cps Specific heat of packing solids 
Db Diameter of bed 
hp Gas-solid heat-transfer coefficient 
ke Effective axial thermal conductivity in packed bed 
Tg Gas temperature 
Tgi Temperature of influent gas stream 
Ts Solids temperature 

Tsi Initial solid temperature 

t  Time 
 

vg Superficial gas velocity in packed bed 
 

 Void fraction of packed bed ߝ
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 Density of gas stream ݃ߩ
 

௦ߩ  Density of packing solids 
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